I am playing around with various discrete and continuous distributions for a statistics course assignment. So, I thought of spending few extra minutes and make a matlab script that would plot all of these. Below is the simple matlab script that plots Uniform, Exponential, Normal distributions. The Normal distribution can be generated using inverse transform, box-muller method and the most famous theorem in statistics: The Central Limit theorem.
I want to extend the script to take various parameters and plot more distributions like weibull, poisson etc. but I dont have time right now!
Code:
I want to extend the script to take various parameters and plot more distributions like weibull, poisson etc. but I dont have time right now!
Code:
%% Uniform distribution using 100 instancesu1 = rand(1,100);
%% Uniform distribution using 1000 instancesu2 = rand(1,1000);
%% Exponential distribution using 100 instancese1 = -log(u1);
%% Exponential distribution using 1000 instancese2 = -log(u2);
%% Normal distribution using inverse transform methodn1 = norminv(u2,0,1);
%% Normal distribution using box-muller methodn2 = sqrt(-2*log(rand(1,1000))).*cos(2*pi*rand(1,1000));
%% PLOT1 ( Uniform, Exponential, Normal distributions )figure(1),subplot(3,2,1),hist(u1,10),title('Uniform using 100 instances');figure(1),subplot(3,2,2),hist(u2,10),title('Uniform using 1000 instances');figure(1),subplot(3,2,3),hist(e1,10),title('Exponential using 100 instances');figure(1),subplot(3,2,4),hist(e2,10),title('Exponential using 1000 instances');figure(1),subplot(3,2,5),hist(n1,10),title('Normal using inverse transform method');figure(1),subplot(3,2,6),hist(n2,10),title('Normal using Box-Muller method');
%% Triangular distributiont1 = rand(1,1000);t2 = rand(1,1000);t3 = t1 + t2;
%% Central Limit Theoremn = 12;for i = 1:nt(i,:) = rand(1,1000);endn3 = sum(t);
%% PLOT2 ( Trinagular and Normal distributions )figure(2),subplot(1,2,1),hist(t3),title('Traingular distribution');figure(2),subplot(1,2,2),hist(n3),title('Normal using central limit theorem');
%% Save to eps filesfigure(1),print('-deps','1.eps');figure(2),print('-deps','2.eps');
No comments:
Post a Comment